L'erreur sur la masse (ou: la grosse erreur..)
D'après David Pratt "Gravité et Anti-gravité" , février 2001.
On dit, qu'en 1665 , Isaac Newton
voyant une pomme tomber d'un arbre, eût l'idée que la
force qui attire la pomme sur la terre est la même que celle qui
maintient la lune en orbite autour de celle ci. La lune ne tombe pas sur
la terre à cause de l'effet compensatoire de sa rotation. Si la
lune devait s'arrêter, elle tomberai sur la terre avec une accélération
de 9.8 m/s², la même que celle imprimée à la pomme
ou à tout objet qui tombe sur terre.
La loi de gravitation universelle
de Newton affirme que la force de gravitation entre deux corps est proportionnelle
au produit de leurs masses et inversement proportionnelle au carré
de leur distance. Pour calculer cette force de gravitation F, on multiplie
les deux masses m1 et m2 ainsi que la constante de gravitation G et on
divise le tout par le carré de la distance r entre les deux masses.
F = Gm1m2/r². Aujourd'hui la théorie de Newton est acceptée
sans question par la quasi totalité des scientifiques.
Cependant il s'en dégage
une contradiction. D'un coté on dit que la force de gravitation
entre 2 ou plusieurs corps est
dépendant de leurs masses
et d'un autre on admet que l'accélération de gravité
d'un corps attiré n'est pas dépendant de sa
masse: si l'on lâche simultanément
d'une tour, une balle de tennis et un boulet de canon les deux objets arriveront
au sol simultanément (en négligeant la résistance
de l'air). En outre bien que la force de gravité et l'accélération
de gravité
procèdent du même
phénomène et bien que la force soit proportionnelle à
l'accélération*, dans la formule il n'apparaît pas
le symbole (g) de la gravité à la surface terrestre ou bien
un terme pour l'accélération.
*Selon la 2ème loi de le
mécanique Newtonienne la force appliquée à un corps
est égale à la masse de ce corps multiplié par son
accélération (F = ma). Cependant, comme l'ont fait remarquer
plusieurs physiciens et philosophes, il ne s'agit pas d'une loi expérimentale,
mais d'une définition arbitraire -- une convention. Les expériences
dont il s'agit ici impliquent l'identité entre le poids et la force;
elles prouvent simplement que le poids d'un corps est égal à
sa masse multipliés par l'accélération (P = ma) et
ne mesure pas une force en soi [1].
Newton lui même croyait que
la force de gravitation était due à la quantité ou
densité de matière et proportionnelle à celle ci.
Mais c'es tun fait historique que pour déduire du système
terre lune que la gravité obéit à une loi en 1/r²
(c'est à dire que la force diminue avec le carré de la distance
au corps attracteur) point ne lui était besoin de disposer ou d'estimer
les masses de la terre et de la lune. Il lui suffisait de connaître
l'accélération de la gravité à la surface de
la terre. Pari Spolter fait remarquer qu'il n'y a pas de raison fondamentale
pour introduire le terme "produit de deux masses" voire d'introduire un
terme pour la masse dans l'équation de la force gravitationnelle
[2].
La combinaison des deux équations
de Newton, ie celle de la gravitation et celle de la 2éme loi de
la dynamique des corps en mouvement donne: F = ma = Gm1m2/r². Or,
pour que ces deux équations s’équilibrent G devrait avoir
la dimension de m³/kg.s² (un volume divisé par une masse
multipliée par un temps au carré). Il est clair que G est
une constante bien étrange.
La valeur de G a initialement
été mesurée en 1788 par l'expérience du pendule
de torsion de Cavendish. Cependant une expérience de type Cavendish
ne constitue pas une preuve de l'équation de Newton: au contraire
de telles expérience présupposent que l'équation est
correcte. Selon Spolter rien ne permet d'exclure que le très petit
angle de réflexion (ou le très petit changement dans la période
d'oscillation) dans la balance de torsion utilisée dans cette expérience
ne soit pas dû à l'attraction électrostatique des sphères
métalliques utilisées. Dans une expérience dans laquelle
des petites masses de platine avaient été enrobées
d'une fine couche de laque, on a obtenu des valeurs significativement plus
faibles pour G [3]. Pour tester plus avant cette possibilité, Spolter
a proposé des expériences complémentaires à
de célèbres journaux scientifiques, mais elles ont été
refusées.
Dans l'hypothèse ou la
gravité est proportionnelle à la masse, on peut utiliser
la valeur de G pour estimer la masse de la terre et sa densité moyenne.
Cette dernière est d'environ 5.5 g/cm³, valeur purement théorique,
bien sûr. Tout ce que l'on sait actuellement à l'aide de mesures
est que la densité moyenne de la croûte terrestre périphérique
est de 2.75g/cm³. Les scientifiques en ont conclu que pour obtenir
cette moyenne de 5.5, la densité des couches internes de la terre
devraient s'accroître substantiellement avec la profondeur. Spolter
fait remarquer que ce modèle couramment accepté est
inconsistant avec la loi de sédimentation dans une centrifugeuse.
La terre tourne depuis des milliards d'années. Si, à l'origine,
elle était en fusion et tournait plus vite qu'actuellement les composantes
de forte densité devraient se trouver dans les couches superficielles.
D'autre part les éléments lourds sont rares dans l'univers,
il est donc difficilement concevable d'en trouver de telles quantités
concentrées dans les profondeurs terrestres.
Johannes Kepler, célèbre
astronome du 17éme a découvert le fait remarquable que le
rapport du cube de la distance
moyenne (r) d'une planète
au soleil et du carré de sa période de révolution
est une constante (r³/t² = constante). Cette relation est connue
sous le nom de 3éme loi de Kepler. Pari Spolter à lui découvert
que l'on peut dériver cette troisième loi de Kepler d'une
simple et nouvelle équation pour la force gravitationnelle: F =
a.A, où a est l'accélération et A la surface du cercle
de rayon r égal au demi grand axe de la planète ou de la
lune, etc*. Comme A = (pi)r², cette équation implique naturellement
que l'accélération due à la gravité décline
en fonction du carré de la distance. Et comme elle ne comporte pas
de terme pour la masse ceci implique que ni la force gravitationnelle ni
l'accélération ne dépendent plus des masses en présence,
la contradiction interne au coeur de la théorie est éliminée.
*Spolter soutient que la force est
toujours indépendante de la masse [4] .Ce n'est pas la force qui
est égale au produit de la masse par l'accélération,
mais le poids. Son équation à elle pour la force linéaire
est F = a.d (accélération multipliée par une distance)
et celle pour la force circulaire est celle donnée précédemment:
F = a.A.
Sur la base de cette équation,
la force gravitationnelle du soleil est égale à 4.16 x 10^20
ms-² m². Cette quantité est
constante pour touts les corps
en orbite autour du soleil et est indépendante de la masse de ce
corps . La force de
gravitation du soleil calculée
par la 2éme loi de newton n'est pas constante et varié de
4.16 x 10^32 newtons pour Jupiter à seulement 0.31 newton pour le
satellite Pionner 5. Accepter l'équation de Newton c'est supposer
que quelque part le soleil ‘reconnaît’chaque corps en orbite et attribue
à chacun un montant spécifique de force gravitationnelle.
Selon l'équation de Spolter,
la force gravitationnelle de la terre est également constante (1.25
x 10^15 ms-² m²) pour tous les objets en chute libre, pour les
satellites et pour la lune. Avec l'équation de Newton cela va de
0.2 newton pour le satellite ERS 12 à 1.98 x 10^20 newtons pour
la lune. Des résultats semblables sont obtenus pour toutes les planètes
de notre système solaire[5]
La théorie de la gravitation
de Newton (et également celle d'Einstein) ignore la rotation du
corps central et le moment de torsion généré par cette
rotation. Spolter suggère que c'est cette rotation de l'étoile,
de la planète, etc.. qui génère la force gravitation
et entraîne les autres corps à tourner autour d'elle. Cette
idée avait aussi été avancée par Johannes Kepler
et est également soutenue par d'autres chercheurs [6]. Spolter montre
que la distance moyenne des planètes au soleil ne sont pas distribuées
au hasard mais suivent une loi exponentielle, ce qui indique que la gravité
est quantisée, au même titre que les orbites des électrons
sont quantisées. Elle montre aussi qu'il en est de même pour
les planètes qui comportent plusieurs lunes.
Les chiffres retenus pour les
masses et les densités des planètes, des étoiles,
etc. sont purement théoriques; on n'a jamais
mis une planète sur une balance pour la peser! Les masses
des corps célestes sont calculées à partir de la formule
de Newton de la 3ème loi de Kepler qui affirme à priori que
le ratio constant de Kepler (r³/t²) est égal à
la masse inerte multipliée par la constante de gravitation. Cependant
cette équation est dimensionellement inconsistante : elle implique
que la masse est égale à un volume divisé par un temps
au carré. L'équation peut s'équilibrer à condition
d'affecter à G la dimension bizarre mentionnée plus haut:
un volume divisé par une masse elle-même multipliée
par un temps au carré. Mais, une constante telle que G constitue
seulement un nombre proportionnel et ne peut pas être utilisé
pour équilibrer une équation aux dimensions.
Dans le 'Dictionnaire du Diable'
on trouve un excellent exemple du raisonnement circulaire dont souffre
la théorie
newtonienne de la gravité.
La gravitation est définie de telle sorte: 'La tendance qu'ont tous
les corps à se rapprocher les uns des autres avec une force proportionnelle
à la quantité de matière qu'ils contiennent --- la
quantité de matière qu'ils contiennent étant déduite
de la force de leur tendance à se rapprocher [7].
[1]Pari Spolter, Gravitational force
of the sun, Granada Hills,
CA:Orb Publishing, 1993, pp. 137-138.
[2] Ibid., p.18,
[3] Ibid., p.117,
[4] Ibid., pp. 231-238.
[5] Ibid., pp.195-198.
[6] Johannes Kepler, Epitome of
Copernican astronomy (1618-21), in Greatbooks of the wester world, Chicago:
Encyclopaedia Britannica, Inc.,
1952,vol 16, pp. 895-905; Stephen Mooney, 'From the cause of gravity to
the revolution of science', Apeiron (http://redshift.vif;com), v. 6, no
&-2,pp.138-141, 1999.
[7] Cité dans Meta Research
Bulletin' 5:3, p.41, 1996.
**********